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We study the classical and quantum mechanics of a three-dimensional stadium billiard. It consists of two
quarter cylinders that are rotated with respect to each other by 90° and it is classically chaotic. The billiard
exhibits only a few families of nongeneric periodic orbits. We introduce an analytic method for their treatment.
The length spectrum can be understood in terms of the nongeneric and unstable periodic orbits. For unequal
radii of the quarter cylinders the level statistics agree well with predictions from random matrix theory. For
equal radii the billiard exhibits an additional symmetry. We investigated the effects of symmetry breaking on
spectral properties. Moreover, for equal radii, we observe a small deviation of the level statistics from random
matrix theory. This led to the discovery of stable and marginally stable orbits, which are absent for unequal
radii.
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I. INTRODUCTION

Wave chaotic phenomena are visible in a large variety of
physical systems ranging from lattice QCD �1,2� to nuclei
�3�, atoms �4�, mesoscopic systems �5�, optical microcavities
�6�, microwave resonators �7–9�, and to vibrations of macro-
scopic objects �10,11�. The correspondence between the clas-
sical dynamics and wave phenomena in the semiclassical re-
gime is of particular interest in such systems; for a
comprehensive review, we refer the reader to Refs. �12,13�.
It is best understood in Hamiltonian systems with two de-
grees of freedom, whereas there is a lack of studies of cha-
otic three-dimensional systems. Experimental investigations
of wave chaotic phenomena in three dimensions can be per-
formed with microwave resonators �14–16� and acoustic
blocks �10,11�. The resonance spectra investigated in such
experiments are described by nonscalar wave equations and
are considerably more complicated than the quantum me-
chanical wave equations of a nonintegrable Hamiltonian sys-
tem with three degrees of freedom.

Let us briefly review the �relatively short� list of studies of
quantum chaos in three-dimensional billiards. Prosen inves-
tigated quantum chaotic phenomena in a three-dimensional
deformed sphere �17�. Primack and Smilansky �18� unrav-
eled the classical and quantum mechanics of the three-
dimensional Sinai billiard �19� and verified the applicability
of Gutzwiller’s trace formula �20,21�; a corresponding ex-
perimental study of a microwave resonator was presented in
Ref. �16�. The experimental study �22� of the three-
dimensional Bunimovich stadium led to a verification of the
trace formula proposed by Balian and Duplantier �23� for
electromagnetic systems. A self-bound three-body system
with high-dimensional scars was studied theoretically in Ref.
�24�. Problems involving mode coupling in three-
dimensional systems were investigated in vibrating crystals
�11� and also in a microwave resonator �22�.

The theoretical description of quantum chaos in three-
dimensional systems is in general very difficult. A full un-

derstanding of the classical dynamics is compounded by the
difficulty to visualize motion in phase space. Moreover, the
analysis of level statistics of the corresponding quantum sys-
tem requires the accurate computation of long level se-
quences and can be a very time-consuming task for eigen-
states with short wavelengths. Furthermore, there are a
number of open questions. These concern, for instance, the
applicability and accuracy of semiclassical periodic orbit
sums for the quantization of such systems. This problem was
addressed by Primack and Smilansky in their study of the
three-dimensional Sinai billiard �18�, which is completely
chaotic. Yet, an infinite number of families of marginally
stable �bouncing ball� orbits considerably complicates the
semiclassical computation of the level density in terms of
Gutzwiller’s trace formula. For the evaluation of the reso-
nance density in three-dimensional microwave resonators,
Gutzwiller’s trace formula does not apply, and one has in-
stead to use the trace formula by Balian and Duplantier. The
applicability of this periodic orbit sum was recently investi-
gated and confirmed for a three-dimensional stadium billiard
with chaotic dynamics �22�. It is the purpose of the present
work to study the quantum mechanical aspects of the three-
dimensional stadium billiard further. We will focus in par-
ticular on quantum manifestations of classical chaos, the ap-
plicability of Gutzwiller’s periodic orbit sum, and on effects
related to symmetry breaking.

The billiard depicted in Fig. 1 is a generalization of the
two-dimensional Bunimovich stadium �25� to three dimen-
sions �26�. It consists of two quarter cylinders that are rotated
about 90° with respect to each other. For the case that these
quarter cylinders are separated by a finite distance a, Buni-
movich and Del Magno �27� showed that this billiard is com-
pletely hyperbolic, i.e., there is no finite measure of trajecto-
ries that is not exponentially sensitive to changes of their
initial conditions. Earlier numerical studies suggest that the
billiard of Fig. 1 is also classically chaotic �26�. In what
follows, we restrict ourselves to this case.
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There are several reasons why the three-dimensional sta-
dium billiard is a promising candidate for the study of quan-
tum chaos. First, the classical dynamics is strongly chaotic
and no stable islands are known for r1�r2. In this work, we
focus particularly on the case r1=�2r2 since this geometry
was studied in microwave experiments �22� and in Ref. �26�.
The ratio was chosen irrational in order to avoid nongeneric
quantum effects due to classical orbits of measure zero �see
below�. Second, nongeneric contributions to the level density
arise due to two families of bouncing-ball orbits. However,
unlike in the case of the three-dimensional Sinai billiard
�18�, their contribution can be computed and subtracted.
Third, for r1=r2 the billiard exhibits a high symmetry �under
reflection at the z=0 plane with a subsequent rotation around
the z axis about 90°�, and this offers the opportunity to study
symmetry-breaking effects. Below, we will see that the level
statistics in this highly symmetric case exhibit a deviation
from the theoretical prediction for chaotic systems. This led
to the discovery of a stable and a few marginally stable orbits
which were previously unknown.

This paper is organized as follows. In Sec. II, we focus on
classical periodic orbits and nongeneric modes. In Sec. III,
we present our analysis of the quantum mechanical spectra
and discuss level statistics and symmetry breaking. We con-
clude with a summary of the main results. Some technical
aspects concerning the finite element approximation with
web-splines are deferred to the Appendix.

II. NONGENERIC MODES AND PERIODIC ORBITS

In this section we investigate nongeneric modes and clas-
sical periodic orbits. The former are an interesting, system-
specific property and must be subtracted from the staircase
function before generic properties can be analyzed; the latter
are useful in a semiclassical interpretation of quantum spec-
tra.

A. Nongeneric modes

We study the desymmetrized stadium billiard depicted in
Fig. 1. The dynamics is limited to x�0 and y�0 with
specular reflections at the planes x=0 and y=0. We use r1
�r2 and will express lengths in units of r2 and wave mo-
menta in units of r2

−1. For r1�r2, the billiard is fully desym-
metrized; for r1=r2, it is still symmetric under reflection at

the plane z=0 and a subsequent rotation by � /2 around the z
axis. We label eigenstates by their wave momentum k. Em-
ploying a recently developed method which is based on finite
elements and seeks solutions of the Schrödinger equation
with Dirichlet boundary conditions, we computed the lowest
1200 levels up to kr2�35. More details on this method are
given in the Appendix.

The staircase function

N�k� = �
n=1

X

��k − kn� �1�

with ��x� denoting the unit step function counts the levels
below a given k. It is the sum of a smooth part Nsmooth�k� and
a fluctuating part Nfluc�k�, i.e., N�k�=Nsmooth�k�+Nfluc�k�. The
smooth part is given by the Weyl formula which is a poly-
nomial of degree three in k and is subtracted from N�k�.
Figure 2 shows the remaining fluctuating part. One identifies
large-scale oscillations that grow in amplitude with increas-
ing wave momentum. These fluctuations are due to the non-
generic modes of the billiard associated with the bouncing-
ball orbits perpendicular to the flat boundaries of the billiard
and the orbits within the z=0 plane.

The fluctuating part of the level density is obtained by
differentiation, i.e., �fluc�k�= d

dkNfluc�k�. The absolute value
squared of the Fourier transform of this quantity yields the
length spectrum. It is shown in the upper part of Fig. 3 for
r1=�2r2. The peaks in the length spectrum appear at the
lengths of classical periodic orbits �21�. The most prominent
peaks are at lengths that are multiples of the bouncing-ball
orbits with lengths 2r1 and 2r2, respectively. There are other
peaks that can be identified with the lengths of orbits inside
the rectangular z=0 plane. Both types of orbits are nonge-
neric due to their particular stability properties. As we are
interested in generic properties, we have to extract these con-
tributions.

First, let us consider the bouncing-ball orbits. There are
two families of bouncing-ball orbits which bounce back and
forth between the two parallel planes of distance r1 and r2 in
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FIG. 1. Three-dimensional stadium billiard. The plane z=0 is
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FIG. 2. �Color online� Fluctuating part Nfluc of the staircase
function for the geometry with r1 /r2=�2 �thin line�. Contributions
from bouncing-ball orbits �dashed line� and from all nongeneric
modes �thick line�.
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the two quarter cylinders, respectively. These orbits are mar-
ginally stable as they have zero Lyapunov exponents. Ac-
cording to semiclassical periodic orbit theory, they are asso-
ciated with long-range oscillations of the quantum
mechanical density of states.

We follow Ref. �15� for the computation of the contribu-
tion of bouncing-ball orbits to the staircase function and fo-
cus on the bouncing-ball modes in the upper quarter cylinder
first. The number of bouncing-ball �bb� modes up to momen-
tum k is given by

Nbb�k� = Trbb���2k2

2m
− Ĥ	

=
 dzdkz

2�

 dydky

2�

��
�=1

	

��k2 − kz
2 − ky

2 − kx,�
2 � + ��x,y� → �y,x�� .

�2�

Here

kx,� �
��

lx
, �3�

and lx=r1, ly =r2. This ansatz for the number of bouncing-
ball modes is intuitively clear. The trace is performed in the
semiclassical approximation as a phase space integral in the
directions perpendicular to the bouncing-ball orbits, while
these modes are quantized along the orbit. The integrations
can be performed, and one obtains �15�

Nbb�k� =
r1

2

16 �
��1

�k2 − k2,�
2 ���k2 − k2,�

2 �

+
r2

2

16 �
��1

�k2 − k1,�
2 ���k2 − k1,�

2 � . �4�

To obtain the fluctuating contribution Nbb,fluc, we subtract a
polynomial of third degree in k from the expression �4�. We
confirmed that the leading coefficients of this polynomial
agree with the coefficients of the Weyl formula. An analyti-
cal formula is presented in Ref. �15�. As evident from Fig. 2,
the bouncing-ball orbits �dashed line� describe the gross os-
cillations of the fluctuating staircase function rather well. To
account for finer details, we also have to consider nongeneric
modes inside the z=0 plane.

The rectangular z=0 plane is special, since the classical
motion is regular inside this plane but unstable with respect
to deviations out of this plane. Note that this does not spoil
the hyperbolicity of the billiard since the set of orbits re-
stricted to the z=0 plane are of measure zero in classical
phase space. However, remnants of families of classical or-
bits inside this plane can also be associated with long-range
fluctuations in the quantum mechanical level density for the
following two reasons. First, the periodic orbits inside this
plane come in two-dimensional families opposed to the iso-
lated periodic orbits in hyperbolic systems. Second, these
orbits are less unstable than most truly three-dimensional
periodic orbits and thus enter any periodic-orbit sum with a
greater weight. It is thus necessary to include the nongeneric
modes associated with the z=0 plane.

Extending the results from Ref. �15�, the number of
modes associated with nongeneric orbits is given by the
quantum mechanical trace over nongeneric �ng� modes

Nng�k� = Trng���2k2

2m
− Ĥ	

=
 dzdkz

2�
�

�,
=1

	

��k2 − kz
2 − kx,�

2 − ky,

2 � . �5�

This ansatz is again transparent: the trace is approximated by
a phase-space integral in the z direction, while the rectangu-
lar sections �with z-dependent area� perpendicular to the z
axis are explicitly quantized. We thus quantize the motion
inside this plane adiabatically, quite similar to the approach
that Bai et al. �28� applied to the Bunimovich stadium. Note
that Eq. �5� accounts both for the bouncing-ball orbits and
for the modes associated with the z=0 plane.

In Eq. �5�, the wave momenta kx,� and ky,
 are defined as
in Eq. �3� but with the z-dependent radii lx and ly. We have

lx�z� = � r1 for z � 0,

�r1
2 − z2 for z � 0.


ly�z� = � r2 for z � 0,

�r2
2 − z2 for z � 0.

 �6�

The integrations in Eq. �5� can be performed analytically,
and one obtains
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FIG. 3. �Color online� Upper part: Length spectrum of the three-
dimensional stadium billiard for r1 /r2=�2 �full line�. Contributions
from unstable periodic orbits �dashed line�. Lower part: Sum of
contributions from nongeneric modes and unstable periodic orbits
�full line�. Peaks at multiples of 2r1 and 2r2 correspond to the
bouncing-ball orbits in the two quarter cylinders. Diamonds:
Lengths of nongeneric orbits in the z=0 plane.
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Nng�k� =
1

�
�

�,
�1

� �A���
,r1,r2� + A���
,r2,r1�� . �7�

Here

A���
,r1,r2� � r1
���


2 − k2,

2 �E���
� − �1 − ��


2 �K���
��
�8�

with

��
 = ��
�k,r1,r2� � � k2 − k1,�
2 − k2,


2

k2 − k2,

2 	1/2

�9�

contains the dependence on the wave momentum and the
radii of the billiard. The wave momenta k1,� and k2,
 are
defined in Eq. �3�. In Eq. �8�, K��� and E��� are the complete
elliptical integrals of the first and second kind, respectively.
The prime in the sum of Eq. �7� indicates that the summation
is limited to values of � ,
 such that the square roots in Eqs.
�8� and �9� are real.

The smooth part of the staircase function is again a poly-
nomial of degree three and is subtracted. The fluctuating part
of Nng�k� is shown in Fig. 2 as a thick line. Clearly, the gross
and also finer oscillations are accounted for. This enables us
to analyze the length spectra depicted in Fig. 3. The upper
part shows the length spectra, i.e., the Fourier transform of
the fluctuating part of the density of states, the lower part
that of the nongeneric modes and the unstable periodic or-
bits, which has been computed based on Eq. �7� and the
Gutzwiller trace formula �see next section�. The peaks at
multiples of the lengths 2r1 and 2r2 are due to the bouncing-
ball modes. The peaks marked by a diamond are due to the
nongeneric orbits in the z=0 plane. The remaining peaks
must thus be associated with lengths of isolated periodic or-
bits, and we turn to their analysis in the following section.

B. Unstable periodic orbits

Following Gutzwiller’s periodic orbit theory �21�, the
semiclassical approximation of the quantum mechanical den-
sity of states is given in terms of the periodic orbits of the
underlying classical system. This sum is infinite such that
approximations have to be invoked. Here, we are interested
in the length spectrum, i.e., the power spectrum of the Fou-
rier transform of the fluctuating part of the level density. The
length spectrum up to length l is given in terms of all peri-
odic orbits up to length l, and this is a finite �but usually with
l exponentially increasing� number of periodic orbits.

The search for periodic orbits is a cumbersome task. Here,
we use two different methods and focus on periodic orbits
outside the z=0 plane. The first method considers the
Poincaré surface of section �PSOS� defined by z=0, pz0,
and constructs the PSOS map. Periodic orbits are fixed
points of this map. They are found by starting a large number
of trajectories in the PSOS and by using a Newton-Raphson
algorithm to find fixed points in the vicinity of each such
trajectory.

The second method is based on a symbolic code and uti-
lizes the fact that the length of a periodic orbit is a local
extremum under variation of the points of reflection along

the billiard’s boundary. This procedure is similar to the one
described in Ref. �18�. We consider an open billiard system
which is the infinite periodic extension of our billiard, and
assign the letters “+” and “−” to reflections on the curved
parts of the upper and lower quarter cylinder, respectively.
Periodic orbits outside the z=0 plane can certainly be de-
scribed as words composed from these two letters. We have
no proof that there is a one-to-one correspondence between
this symbolic code and the periodic orbits of our system.
Given a word from this alphabet, we construct a random
closed orbit as follows. For each “+” �“−”� letter of the word,
we choose a random point on the curved surface of the upper
�lower� quarter cylinder. We connect this sequence of points
by straight lines and compute the length of this closed orbit.
Then we vary the positions of the random points in order to
find a local minimum of the length.

Both methods yield a considerable number of periodic
orbits, and we consider the union of the resulting sets as our
set of periodic orbits. Once a periodic orbit is found, we
compute its length, monodromy matrix, and its Maslov index
following Ref. �29�. Recall that the monodromy matrix is the
tangent map and encodes the stability properties of the peri-
odic orbit. For unstable orbits, its eigenvalues come in real
pairs �+ ,�− with �+�−=1 or in complex quadruples
�+ ,�− ,�+

� ,�−
� with �+�−=1. Stable orbits have two pairs of

complex eigenvalues with modulus one.
We performed our most extensive search for the billiard

with the geometry r1=�2r2 and determined more than 2000
periodic orbits. We believe that our list is fairly complete for
the shortest orbits. All periodic obits we found were unstable.
This extends and confirms the numerical results of Ref. �26�
and strongly suggests that the billiard is completely chaotic.
The quantum mechanical results presented below support
this picture. The contribution of the unstable periodic orbits
to the length spectrum is shown in the upper part of Fig. 3 as
a dashed line. Clearly, unstable periodic orbits contribute sig-
nificantly to the length spectrum, particularly for length
l /r2�6 where the contributions from nongeneric modes be-
come less dominant.

However, for the case r1=r2 we found a stable periodic
orbit. This was unexpected, since earlier studies �26� yielded
a positive Lyapunov exponent for a sample of 104 randomly
chosen trajectories, and not one of the trajectories was found
to be stable. The shortest stable periodic orbit we found has
a length l /r2�10.1706. Note that the eigenvalues of the
monodromy matrix corresponding to this orbit are on the unit
circle and very close to the real axis. Thus it is difficult to
distinguish this orbit from a marginally stable orbit. We also
obtained periodic orbits �in addition to the bouncing-ball or-
bits� that are marginally stable, i.e., the eigenvalues of the
monodromy matrix are real with modulus one. The shortest
of these orbits has a length l /r2�5.4981. Other marginally
stable orbits have periods l /r2�5.5153,6.2701,6.4738.

To study the relevance of these orbits, we show the length
spectrum of the billiard for r1=r2 in Fig. 4. Diamonds denote
the lengths of bouncing-ball orbits and of nongeneric peri-
odic orbits associated with the z=0 plane; they account for
many peaks in the length spectrum. We also computed the
lengths, monodromy matrices, and Maslov indices of the 400
shortest unstable and marginally stable orbits by proceeding
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as in the case r1=�2r2. However, we have no semiclassical
theory for the computation of the density of states for the
marginally stable and the stable orbit, and we are not able to
disentangle their contribution to the length spectrum from
that of the nongeneric modes. For this reason we show in
Fig. 4 the length spectrum of the billiard and indicate the
lengths of the nongeneric orbits by diamonds, and those of
the marginally stable orbits by the full arrows. The dashed
arrow marks the length of the stable orbit. It is difficult to
clearly identify its impact on the length spectrum, since the
peak around length l /r2�10.19 can be attributed to the
stable orbit and/or to a nongeneric orbit. Recall that a stable
orbit leaves a strong imprint in the length spectrum if the
stable island around it is sufficiently large �in units of
�2���3� to accommodate eigenstates. To obtain an estimate
for the phase-space volume of the elliptical island we started
bundles of 214 trajectories in the PSOS close to the stable
periodic orbit. All trajectories departed from the stable orbit
after a few intersections with the PSOS. Within the achiev-
able numerical accuracy we may thus conclude that either
the volume of the phase space associated with the stable
orbit is very small or that contrary to our numerical results it
is only marginally stable. Note that there are several margin-
ally stable orbits associated with the third arrow from the
left. These orbits have almost identical lengths, and the vi-
sual inspection indicates that they are whispering gallery or-
bits. In this case, interference effects might explain why
there is no clear peak in the length spectrum associated with
these orbits. A similar effect has been found in the two-
dimensional stadium billiard �30�. In the next section we
present evidence that the stable and marginally stable orbits
explain peculiarities in the level statistics of the billiard with
r1=r2.

III. SPECTRAL PROPERTIES AND SYMMETRY
BREAKING

In this section we investigate statistical properties of the
eigenvalues of the three-dimensional stadium billiard for a
varying ratio of the radii r1 /r2 of the two quarter cylinders,

where the volume of the billiard is kept fixed. We computed
the lowest 1200 levels with a recently developed finite ele-
ment method �31� described in the Appendix. The lowest 200
levels are discarded since we are interested in the correspon-
dence between classical and quantum mechanics. In order to
get rid of system-dependent properties, we need to rescale
the eigenvalues to unit mean spacing and to extract the con-
tributions of the nongeneric modes to the fluctuating part of
the resonance density. This is done by replacing the com-
puted wave numbers k by k̃=Nsmooth�k�+Nng,fluc�k� �see
Refs.�9,15��. As the underlying classical dynamics is com-
pletely chaotic, we expect agreement of the statistical prop-
erties of the unfolded eigenvalues with those of random ma-
trices drawn from the Gaussian orthogonal ensemble �GOE�
if r1 is chosen not equal to r2 �32�. In Fig. 5 we show the
nearest-neighbor spacing distribution and the �2 statistics for
a ratio of radii r1 /r2=�2, i.e., for the case considered in the
experiments with the microwave cavity of the shape of a
three-dimensional stadium billiard �22�. Both curves agree
well with the corresponding ones for random matrices from
the GOE. This shows that first the three-dimensional quan-
tum stadium billiard behaves like a generic quantum system
with chaotic classical dynamics, and second that our proce-
dure of extracting the contribution of nongeneric modes is
applicable and complete.
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FIG. 4. �Color online� Full line: Length spectrum for r1=r2.
Diamonds: Length of bouncing-ball orbits and of nongeneric orbits
in the z=0 plane. Full arrows: Length of marginally stable orbits.
Dashed arrow: length of stable periodic orbit.
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FIG. 5. �Color online� Upper panel: Nearest-neighbor spacing
distribution �histogram� of the billiard for r1=�2r2 compared to the
GOE prediction �dashed line�. Lower panel: �2 statistics �thin line�
compared to the GOE prediction �dashed line�.
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We recall that the experiment �22� with a microwave reso-
nator of the shape of a three-dimensional stadium billiard
with r1 /r2=�2 revealed deviations of the spectral properties
from GOE behavior. This was attributed to a partial decou-
pling between electromagnetic TE and TM modes in the low-
frequency regime. Note, however, that this system differs
from the quantum billiard considered in the present work due
to the vectorial character of the underlying wave equations.
As a consequence, the trace formula by Balian and Duplan-
tier �23� has to be employed for the semiclassical computa-
tion of the length spectrum. It differs from Gutzwiller’s trace
formula in the occurrence of a factor associated with the
polarization, and as a consequence, only periodic orbits with
an even number of reflections enter. The evaluation of this
factor showed that the electric and magnetic modes are de-
coupled on a considerable fraction of the short periodic or-
bits. This finding supports the interpretation of the observed
deviations from GOE behavior in terms of a partial decou-
pling between the TE and the TM modes. In Ref. �22� the
experimental length spectrum was well-reproduced by the
theoretical calculations based on the trace formula derived
by Balian and Duplantier. As there the polarization of the
electric field is taken into account for each unstable periodic
orbit individually, this good agreement is not in contradiction
to the discrepancy obtained for the spectral properties.

A. Symmetry breaking

For r1=r2, the billiard is symmetric with respect to reflec-
tions at the z=0 plane and a subsequent � /2 rotation about
the z axis. Accordingly, in this case the wave functions of the
billiard are symmetric or antisymmetric under the symmetry
operation and belong to different irreducible representations
�IR�. Assuming that the billiard is chaotic, the spectral prop-
erties of levels within each IR are expected to coincide with
those of random matrices from the GOE. However, the spec-
tral statistics for the whole set of eigenvalues should coincide
with random matrix theory �RMT� for a superposition of two
independent GOEs.

Let H1 and H2 be two random matrices drawn from the
GOE and consider an ensemble of random matrices of the
form �13,33,34�

H = �H1 0

0 H2
	 . �10�

For a generic chaotic system with two symmetry classes, the
spectral properties of the eigenvalues associated with each
symmetry class are given by those of the random matrices H1
and H2, respectively, whereas the complete set of eigenval-
ues is described by those of H itself. Since, in our case, the
number of eigenvalues associated with the two symmetry
classes are �approximately� equal, the matrices H1 and H2 are
chosen of equal dimension for the theoretical description of
the spectral properties of the quantum billiard. In Fig. 6 we
compare the �2 statistics for the eigenvalues of the quantum
billiard �thin line� with that of an ensemble of random ma-
trices of the form Eq. �10� �dashed line�, which is known
analytically �34�. We observe significant deviations, which
cannot be explained by an additional family of nongeneric

modes. Indeed, Fig. 7 shows the fluctuating part of the stair-
case function Nfluc�f� for the case r1=r2 �thin line� and the
contributions of the nongeneric modes resulting from Eq. �7�
�thick line�. As for the case r1 /r2=�2, the smooth oscilla-
tions of Nfluc�f� are well-described by our expression. From
this we may conclude that the adiabatic method described in
Sec. II yields a good approximation for the contribution of
the nongeneric modes to the staircase function also for r1
=r2. We also verified that the deviations are not due to insuf-
ficient numerical accuracy in the computation of the eigen-
values. How can this puzzle be understood?

Recall that the billiard has a stable orbit for r1=r2 and
several marginally stable orbits besides the bouncing ball
orbits. This suggests that their presence causes the deviation
depicted in Fig. 6. In order to test this hypothesis, we con-
sidered the following random matrix ensemble. Each random
matrix consists of two block matrices H1 and H2 of equal
dimension that are drawn from the GOE. These model the
two symmetry classes of eigenstates associated with the cha-
otic part of the billiard �see Eq. �10��. An additional diagonal
random matrix of much smaller dimension models eigen-
states associated with the few stable orbits. This diagonal
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FIG. 6. �Color online� �2 statistics for the billiard with r1=r2

�thin line� compared to the GOE prediction �dashed line� and to a
random matrix model which also includes a Poissonian sequence of
random levels �dots�.
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FIG. 7. �Color online� The fluctuating part Nfluc of the staircase
function for the billiard with r1=r2 �thin line� compared to the
contributions from the nongeneric modes �thick line�.
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matrix thus exhibits Poisson statistics. The dimension of the
latter matrix was chosen equal to 25, that of H1 and H2 equal
to 250. The �2 statistics of this random matrix model is
plotted as a dotted line in Fig. 6. It agrees very well with that
of the billiard. This suggests that the stable and marginally
stable orbits are responsible for the observed deviations from
the prediction of standard RMT. Most interestingly, the
stable orbits disappear immediately when the ratio r1 /r2 dif-
fers slightly from one.

For geometries r1�r2, the symmetry of the billiard is
broken. The underlying quantum system “sees” this symme-
try breaking once the perturbation due to the symmetry
breaking is of the order of the mean level spacing, or, alter-
natively, once the geometric distortions due to the symmetry
breaking are of the scale of one wavelength. For a com-
pletely broken symmetry, RMT predicts agreement of the
spectral properties of the billiard with those of one GOE.
Quantum mechanically, however, we found that for r1�r2,
the spectral properties coincide with those of random matri-
ces applicable to chaotic systems with a partially broken
symmetry �13,33–36�,

H = �H1 0

0 H2
	 + ��D� 0 V

VT 0
	 . �11�

In this random matrix model, the first �second� matrix pre-
serves �breaks� the symmetry. The size of the symmetry
breaking is set by the dimensionless parameter � measured
on the scale of the mean spacing D. Here as in Eq. �10�, H1
and H2 are random matrices drawn from the GOE. The sym-
metry breaking is modeled by the off-diagonal blocks V and
VT, where the random matrix V is real with no symmetries.
For this random matrix model, the �2 statistics is known
analytically for arbitrary values of �.

Figure 8 shows the �2 statistics �thin line� for an increas-
ing ratio r1 /r2 of the radii of the billiard. For comparison, we
also show the �2 statistics for one GOE �dashed line�, for
two GOEs �dotted line�, and for the random matrix model
�11� �thick line�. The values of � given in the figure are
obtained by a fit of the model �11� to the data. For r1 /r2
=1.0025 there is perfect agreement with the random matrix

model Eq. �10� that describes chaotic systems with a con-
served symmetry. On the one hand, the ratio r1 /r2=1.0025
deviates �sufficiently strong� from one and the stable island
has disappeared. On the other hand, this ratio is still so close
to one that the quantum mechanics is unable to resolve the
symmetry breaking. For increasing values of the ratio r1 /r2,
the symmetry breaking is revealed in the spectral statistics,
and the parameter � in Eq. �11� increases from zero. Even-
tually, for r1 /r2�1.1, . . . ,1.2, the �2 statistics approaches
that of one GOE. This result is in agreement with a semiclas-
sical estimate. The symmetry breaking is resolved for wave-
lengths 2� /k� �r1−r2�. We have maximal wave momenta
kr2�35 and can thus resolve symmetry breaking of the order
r1 /r2�1+2� / �kr2��1.18. Note that we can also base our
semiclassical estimate on the smooth part Nsmooth�k� of the
staircase function. This function is quadratic in the
symmetry-breaking parameter �r1−r2�. At maximal wave
momenta kr2�35 nonzero values of this parameter lead to
significant changes of Nfluc�k� for r1 /r2�1.18. In conclusion,
the classically abrupt change of the symmetry properties of
the system is accompanied by a gradual change of the spec-
tral properties of the corresponding quantum system from
those of chaotic systems consisting of a superposition of two
symmetry classes to those of chaotic systems with no further
symmetries.

We add here some more notes concerning the experiment
with a microwave resonator �22�. There, the spectral proper-
ties were also described with the model given in Eq. �11�,
where one of the block matrices H1, H2 depicts the properties
of the TE, the other those of the TM modes and deviations
from GOE behavior were interpreted as due to a partial de-
coupling of them. In the experiment the ratio r1 /r2��2 with
r1=200.0 mm and r2=141.4 mm was kept fixed, while the
value of the resonance frequency f , that is of k= 2�f

c with c
the velocity of light, was varied up to f =20 Ghz.

Is for this choice of the radii and of the frequency range
the symmetry breaking discussed above observable? The
breaking of the symmetry existent for r1=r2 is resolvable for
wavelengths smaller than �r1−r2�, that is for 2� /k=c / f
� �r1−r2�=58.6 mm. Accordingly, for excitation frequencies
f �5.12 GHz good agreement of the spectral properties with
those of random matrices from the GOE are expected. In the
experiment, however, deviations from one GOE were ob-
served up to approximately 17 GHz. Hence they cannot be
explained with the particular mechanism of symmetry break-
ing discussed above. In order to resolve the discrepancy be-
tween theory and experiment numerical computations of the
full vectorial Helmholtz equation are desired.

B. High-lying states

Strictly speaking, the semiclassical approximation and the
Bohigas-Giannoni-Schmit �12,37,38� conjecture, which
states that the spectral fluctuation properties in quantum sys-
tems with a chaotic classical dynamics coincide with those of
random matrices drawn from the Gaussian random-matrix
ensembles, apply in the regime when the wavelength is the
smallest length scale of the system, i.e., kr2�1 must hold.
Nevertheless, we saw in the previous section that the semi-
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classical analysis of the length spectrum is also useful for the
low-lying states. In this section, we compute high-lying
quantum states of the billiard and perform level statistics.
For the computation of high-lying levels, we employ Pros-
en’s generalization �17� of the two-dimensional method by
Vergini and Saraceno �39� to three-dimensional billiards.
This method is particularly suited for high-lying eigenstates
and determines a stretch of eigenstates around some arbitrary
wave momentum k0 with k0r1�1. This method yields 1669
levels in the regime 79�kr2�86.

Figure 9 compares the spectral properties of the eigenval-
ues in the lowest part of the spectrum �thin line� with those
of the high-lying eigenvalues �dashed line� and the GOE
�dashed-dotted line�. While the �2 statistics of the low-lying
set of eigenvalues agrees well with that of random matrices
from the GOE, we observe significant deviations for that of
the high-lying ones. This points to inadequacies of our pro-
cedure to extract the contribution of the nongeneric modes to
the fluctuating part of the resonance density. Recall that our
semiclassical formula �7� takes account of the leading non-
generic modes. These are contributions that scale as k3 with
increasing wave momentum. Next-to-leading order contribu-
tions scale as k2. These are only partly included. In our an-
satz �5� we integrate over rectangles with a z-dependent area.
There are many billiards of different shape �but identical
volume� that have rectangular cross sections. However, evi-
dently, our procedure is well-suited for small or moderate
values of kr2, but it seems to be insufficient in the semiclas-
sical regime.

IV. SUMMARY

We studied the classical and quantum mechanics of the
three-dimensional stadium billiard. This billiard consists of
two quarter cylinders that are rotated by 90° with respect to
each other and is classically chaotic for unequal radii of the
quarter cylinders. We studied the nongeneric modes of the
billiard that are due to bouncing-ball orbits and orbits within
a rectangular cross section of the billiard and gave analytical
expressions for their contribution to the staircase function.
The quantum mechanical length spectrum can be understood

in terms of the nongeneric modes and unstable periodic or-
bits. For unequal radii of the two quarter cylinders, the level
statistics agrees with predictions from random matrix theory.
For equal radii, we found deviations from standard random
matrix theory and these can be attributed to a stable and a
few marginally stable orbits. We modeled a random matrix
ensemble on this basis and found very good agreement with
our data. We studied the level statistics as a function of the
ratio of the two radii. For slightly unequal radii, there is a
sudden transition from a system with mixed phase space to a
system with a chaotic phase space. For larger differences of
the radii, we follow the symmetry-breaking transition toward
the spectral statistics of one GOE.
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APPENDIX: FINITE ELEMENT METHOD

In order to calculate a complete sequence of eigenvalues
for the three-dimensional stadium billiard, we use a finite
element method �see, for example, Ref. �40�, Chap. 11�. This
discretization of the eigenvalue problem

− ��i = ki
2�i in � ,

�i = 0 on � � , �A1�

leads to a generalized eigenvalue problem

Ah�i
h = �i

hMh�i
h, �A2�

where Ah ,Mh�Rn�n are finite dimensional matrices. The ei-
genvalues �i

h and eigenfunctions �i
h of the discrete problem

approximate the eigenvalues and eigenfunctions of the con-
tinuous problem �A1�. Here the parameter h�R+ represents
the fineness of the test functions used in the discretization
process. With the usual assumptions �see Ref. �40��, we get
the error-estimate

�i
h − �i � C�i

l+1h2l, �A3�

where l is the polynomial degree of the used test functions.
This estimate shows that it is possible to compute an arbi-
trary number of eigenvalues with a given accuracy by using
a sufficiently fine discretization. Using standard piecewise
linear functions, we obtain convergence of order h2 so that
small values of h are required for high accuracy. Accord-
ingly, the dimension of matrices Ah and Mh becomes very
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large, and solving the generalized eigenvalue problem �A2�
is extremely costly.

Using test functions of higher degree yields a significantly
improved performance of the method. We suggest using a
special modification of tensor product B-splines with arbi-
trary coordinate degree. While independent of l, B-splines
may do with only one coefficient per element, standard ap-
proaches of higher order require a much larger number,
which is increasing with the degree. Since computation time
to solve Eq. �A2� is growing rapidly with the number of
degrees of freedom, this aspect is crucial for achieving high
accuracy.

So far, despite these advantages, B-splines have rarely
been used in finite element applications, the main reasons
being Dirichlet boundary conditions and stability. A solution
to these problems was proposed by Höllig, Reif, and Wipper
�41�. Stability is achieved by linking potentially unstable
B-splines near the boundary of the domain in an appropriate
way to B-splines in the interior of the domain. Following old,
but little known ideas of Kantorovitch and Krylow, homoge-
neous Dirichlet boundary conditions are ensured by multi-
plying all test functions by a weight function w which van-
ishes on the boundary and is positive inside the domain �. It
can be shown that the resulting weighted extended B-splines
�WEB-splines� form a stable basis and possess the same ap-
proximation order as the underlying tensor product splines
space �41–43�.

In this work we apply the WEB-spline method to approxi-
mate eigenvalues of the Laplacian on the three-dimensional

stadium billiard ��R3. The implementation includes a spe-
cifically designed high accuracy integration algorithm. It is
based on precomputed projections of the boundary grid cells
and iterated one-dimensional Gauss quadrature.

We use tensor product B-splines of degree l=4 on a grid
with 25�25�40 cells. This leads to a generalized eigen-
value problem �A2� of dimension 9250. To determine the
eigenvalues, we use the Cholesky-decomposition Mh=LLt to
compute the matrix

Bh: = L−1Ah�Lt�−1. �A4�

The eigenvalues of Bh are just the generalized eigenvalues of
�Ah ,Mh� so that standard software can be used to compute
the �i

h. Compared with iterative methods, the advantage of
this procedure is that one can be sure that no eigenvalues in
the domain of interest are lost. On the other hand, the maxi-
mal dimension that can be handled that way is limited by the
fact that Bh is a dense matrix.

Of course, only a certain fraction of the eigenvalues �i
h of

Bh provides a reasonable approximation of some �i. The es-
timate �A3� suggests that smaller eigenvalues are approxi-
mated better than larger ones, but it does not provide actual
bounds since the constant C is not known explicitly. Compu-
tations on other domains, where the exact eigenvalues �i are
explicitly known, indicate that at least the first 16% of the
eigenvalues �i

h, when ordered by modulus, have a relative
error less than 0.1% For the statistical evaluation in this pa-
per, 1200 out of 9250 eigenvalues, i.e., 13% are used.
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